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We investigate the influence of the current ,  magnetic-f ield induction, a i r  flow, and in ter -  
e lectrode gap on the a rc  veloci ty in an annular gap between concentr ic  electrodes.  Genera l -  
ized equations in cr i t ical  (dimensionless) form are  presented for the experimental  data. 

Elect r ic  a r c s  moving in a magnetic field have at t racted the interest  of scientists  and engineers for  
many years .  The motion of a r c s  over e lectrodes  have been the subject of many papers (cf. [1]). There  
a re  general ized express ions  for the motion velocity, which pertain mainly to an a rc  moving over parallel  
e lect rodes  [2-6]. There  a r e  fewer data on the velocity of an a rc  moving in a gap between concentr ic  e lec-  
trodes.  In this case, however,  the a r c  column is under more  complicated conditions, especia l ly  when it is 
located in a s t r eam of cold gas. 

In many devices,  an a rc  placed in a t r ansve r se  s t r eam is used to heat gas to high temperature .  The 
gas flow can be varied in a wide range,  thereby significantly al ter ing the conditions under which the a rc  
burns.  At small  gas flows, the a rc  column moves in pract ice in a heated medium, whereas  in the case of 
good ventilation of the gap the motion is in a cold gas. In installations with concentr ic  e lectrodes ,  the c i r -  
cumferences  of the anode and of the~cathode a re  not equal, so that when the a rc  moves the velocit ies of the 
cathode and anode regions are  not uniform, and this leads to a lengthening and periodic shunting of the a rc  
column. 

The lengthening of the column is due to the additional energy loss, and affects the charac te r i s t i cs  of 
the arc .  On the other hand, the shunting has a random charac ter ,  and this causes  random oscillations of 
the current ,  of the voltage, and of the a rc  velocity. A considerable scat ter  of the experimental  data is 
therefore  observed in the measurements .  Nonetheless, the use of stat is t ical  methods makes it possible 
to reveal  the main laws, and the use of the theory of approximate scaling makes it possible to obtain gen- 
era l ized formulas .  

The present  investigations of the e l e c t r i c - a r c  velocity were performed in a setup with concentr ic  
copper electrodes.  The diameter  of the outside electrode was 40 ram, and the data of the inside electrode 
was 28 or 34 mm [7]. An axial magnetic field was produced by solenoids with adjustable independent sup- 
ply, which made it possible to va ry  the induction f rom 0 to 0.29 T. To ensure a cer ta in  minimal a rc  velocity 
so as to prevent  burning up of the e lectrodes ,  the magnetic induction was never lower than 0.085 T. The 
a r c  cur ren t  ranged f rom 100 to 800 A. Air was blown through the gap between the electrodes at a flow rate  
that varied f rom 0 to 14 g / s e c .  The a i r  was fed into the interelectrode gap tangentially in the same d i rec -  
tion of motion as the arc.  

In the experiments  we measured  the current ,  a i r  flow, magnetic field induction, and a rc  velocity. 
The velocity was measured  by recording  the cur ren t  pulses in the slotted half-sect ion of the other e lec-  
trode,  using a procedure  described in [7]. Thus, what was actually measured was the average  velocity 
of the a rc  spot over the surface of the electrode. 

The experiments  have demonstrated a considerable sca t ter  of the average  velocity of the a rc  spot: 
The la rges t  deviation, 4-60%, was observed at zero gas flow, but when this flow increased it dropped to 
~= (40-20)%. With increas ing air  flow, the average  a rc  velocity decreased.  The decrease  of the veloci ty 
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Fig. 1. Average a rc  velocity versus  flow of ventilating gas (6 = 6 mm; B = 0.29 
T): 1) I = 800; 2) 600; 3) 400; 4) 200. 

Fig. 2. Generalized a rc  velocity in a ventilated annular gap: at 5 = 3 mm: 1) B 
= 0.085; 2) 0.12; 3) 0.23; 4) 0.29 T; at  6 = 6 mm: 5) B = 0.085; 6) 0.12; 7) 0.23; 8) 
0.29 T; I = 100-800 A; G = 0. Cooled copper electrodes.  

with increasing a i r  flow was at f i rs t  quite rapid, but the a rc  velocity a s sumes  a pract ical ly constant value 
star t ing with a cer ta in  air  flow (Fig. 1). 

With increasing cur ren t  and intensity of the external magnetic field, the a rc  velocity increases .  In 
a cer tain range, the dependence of the velocity on the current  and on the induction of the magnetic field 
can be represented by a l inear function [7]. Such approximations, however, a re  limited in charac ter  and 
it is more  convenient to use a s imi la r i ty - theory  (scaling) method to general ize the experimental  data. 

There have been a number of papers devoted to derivation of c r i t e r i a  for the general izat ion of the 
charac te r i s t i cs  of e l ec t r i c  a r c s  and to the general izat ion of the experimental  data [8]. To obtain general  
relat ions for  the velocity of an a rc  in a magnetic field it is cus tomary  to use the dimensionless numbers  
I11 = ~ ( S V / I ) ,  I] 2 = ~ V / B )  or their product H a = P0V25/IB [10]. The dimensionless  a rgument  
for the case when there is no flow of external gas around the a rc  one uses the dimensionless number II 4 

= ~0I/BS. 

In a ventilated annular gap it is neces sa ry  to take into account the influence of the gas flow and the 
curvature  of the electrode surfaces .  The influence of the curvature  is c lear ly  seen in Fig. 2, which shows 
the general ized relat ions 

, / 
V ~,o~o T = f k--~- / (1) 

at zero air  flow for  gaps of 3 and 6 mm. As seen f rom Fig. 2, the a rc  velocity is l a rge r  in the gap with 
5 =6 mm. 

It is not ve ry  likely that this difference is due to the size of the gap. Similar generalizations given 
in [5] for  parallel  e lectrodes have shown that the size of the gap exerts  no influence in the range 12-38 mm. 
At smal le r  gaps, the velocity usually decreases  somewhat with increasing interelectrode gap, ra ther  
than increas ing [1]. Consequently, this veloci ty  difference is apparently due to the curvature  of the gap, 
which can be taken into account by means of the parametr ic  dimensionless number Il5 = 5/D. In this case 
the data given in Fig. 2 can be approximated with an root mean square e r r o r  of 10~c by the express ion 

V-p0~---~ v = 1 7 4 6 (  ~~ /~176 8-~-~ ~ (2) 
B " ( B 3 . ]  ~ n ]  " 

The data of [4, 5] show that besides the e lectromagnet ic  forces  taken into account by the dimension-  
less  number 114, it is neces sa ry  to take into account the p ressu re  forces .  In the presence of flow of ex- 
ternal  gas around the are ,  the rat io of the p ressu re  forces  to the inertia forces  is given by the dimension-  
less number Il~ = W~P--0-07-~. When this number is increased,  the general ized velocity of the a rc  decreases ,  
but the sca t ter  of the experimental  points remains  at its previous level. 
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Fig. 3. Generalized a rc  veloci ty in a ventilated annular gap (I 

: 100-800 A; D : 4 0  mm; A =  log [1/p-~0 -~ / (~- )~  e-41.2~Vp~7-P]; 

B = log( ), at 6 : 3 m m ,  G : 0 "  1 1 B  ~ 0 . 0 ~ 5 p  2) 0.12; 3) 0.23; 

4) 0.29 T; G = 5.5 g / s e c :  5) B = 0.29; 6) 0.12; 7) 0.23; 8) 0.085; 
T; G = 9.2 g / s e c :  9) 0.085; 10) 0.12; 11) 0.23; 12) 0.29 T; G = 14 
g / s e c :  13) 0.085; 14) 0.12; 15) 0.23; 16) 0.29 T; at 6 = 6 ram, G 
= 0: 17) 0.085; 18) 0.12; 19) 0.23; 20) 0.29 T; G = 5.5 g / s e c :  21) 
0.29; 22) 0.12; 23) 0.23; 24) 0.085 T; G = 9.2 g / s e c :  25) 0.085; 
26) 0.12; 27) 0.23; 28) 0.29 T; G = 14 g / s e c ;  29) 0.085; 30) 0.12; 31) 
31) 0.23; 32) 0.29 T. 

A general izat ion of the experimental  data with allowance for the dimensionless number 1] 6 is shown in 
Fig. 3. We see that the scat ter  does not exceed 50%. The data in Fig. 3 a re  approximated in the entire range 
indicated above for  the variat ion of the current ,  a i r  flow, magnetic-f ield induction, and gap geometry,  with 
a root mean square e r r o r  16%, by the formula 

V 0.691 
- - =  (  048, )0.5,0 ;4, 

V~0~0 B \--~-  ] 

In formulas  (2) and (3) we used dimensionless complexes containing scale values of the density and 
p ressu re  of the ambient medium. In the experiments,  the p ressure  was equal to a tmospher ic ,  and the 
density P0, in accord  with [9], was assumed equal to 1.97 �9 10 -2 k g / m  3. In calculating the velocity of the 
flow around the a r c  we used the value of the air  density at a tmospher ic  p ressu re  and at 15~ 

The exponents in the dimensionless numbers  114 and 1] 5 of expression (3) represent  cer tain average  
values of these quantities for the entire range or var ia t ion of the gas flow. 

A compar ison of formulas  (2) and (3) shows that the change of the flow of cold gas in the gap has little 
effect on the dependence of 112 on I]4, whereas  the exponent of I1G decreases  to a lmost  one-half  its value. 
A change takes place also in the numerica l  coefficient of the formula. An explanation of this fact  is ap-  
parently that the gap curvature  affects the charac te r i s t i cs  of the arc  by al ter ing the shape of the arc .  

With increas ing  gap curvature ,  the angle of inclination of the a rc  to the outer electrode,  over the 
surface of which the veloci ty is measured,  decreases ,  and the velocity of the e lec t r ic  a rc  is increased 
by the breakdown of the cold gas layer  next to the electrode. It is also possible that in the investigated 
case,  at  a gap 5 = 3 ram, the predominant influence is exerted by processes  near the electrodes,  in which 
the a rc  velocity increases  ra ther  than dec reases  with increas ing gap. Blowing cold gas over the a rc  causes 
in turn periodic lengthening of the a rc  column in the axial direction. The angle between the a rc  column 
and the magnetic-f ield line then decreases ,  and with it also the force  acting on a unit length of the a rc  
column. The exponent of the dimensionless number 1] 5 is accordingly decreased.  

The exponent of 114 fluctuates insignificantly and its mean value is 0.5. This means that the a r c ' s  own 
magnetic field has little influence on the a rc  motion in the annular gap with the investigated configuration. 
In fact, if we divide equations (2) and (3) by (114) o.5 , we obtain the respect ive formulas  

IB ( ' 
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U = 0.691 - - ~ - ]  ~-D-] e 

in which the influence of the d imens ionless  number  1] 4 is negligible and f luctuates about zero.  The number  
117 = V (P05/IB)V is equal to the square  root  of I]3, which is  obtained d i rec t ly  f r o m  the equation of motion 
without taking into account the magnet ic  field of the a r c  i tself  [6]. 

Thus, we can use in place of (2a) and (3a) the s imple r  express ions  

TB- V --~ (2b) 1,74 t-D-- ) , 

IB v = . . ~  ~ - D - )  e (ab)  

These  express ions  show that  the motion of the e lec t r ic  a r c  is controlled by p r o c e s s e s  of in terac t ion  of the 
a r c  column with the gas.  The regions next to the e lec t rodes  exer t  p rac t i ca l ly  no influence on the a r c  motion 
in the invest igated range  of p a r a m e t e r s .  

Thus, our invest igat ion has shown that~arc motion in a venti lated gap obeys the s ame  laws as  in an 
in te re lec t rode  gap with forced draft .  The fo rmulas  become somewhat  more  complicated because  of the 
need for  taking into account the cu rva tu re  of the a r c  path. By r e f e r r i n g  the p r e s s u r e  fo rces  to the iner t ia l  
fo rces  instead of the e lec t romagne t ic  fo rces  as in the absence  of gas flow around the a r c  it becomes  pos-  
s ible  to avoid the introduction of an addit ional d imens ionless  number  and to genera l i ze  the veloci ty  of an 
a r c  moving in a magnet ic  field and in a gas s t r eam.  An in teres t ing  fact  is that fo rmulas  (3) and (3a) do not 
include d imens ion less  numbers  that r e f l ec t  the heat -exchange p r o c e s s e s ,  a l though al lowance for  these 
p r o c e s s e s  is quite des i rab le ,  s ince the venti lat ion of the gap changes the gas  t e m p e r a t u r e  in the path of the 
a rc .  At the s ame  t ime,  the hea t -exchange  conditions, on which the dimensions  of the a r c  and its a e r o -  
dynamic r e s i s t ance  depend, a r e  a lso  a l tered .  At tempts  were  made to genera l ize  the exper imenta l  data ob- 
tained in the p resen t  study with account taken of heat  exchange, and cor responding  express ions ,  which a r e  
not presented here ,  were  not derived.  However ,  even if we genera l ize  s e p a r a t e l y  the sect ions with s t rong 
and weak dependence on the gas- f low veloci ty ,  the resul tan t  a ccu racy  is worse  than when the d imens ion less  
number  116 is used. An additional introduction of a "convect ive"  energy-dependent  d imens ionless  number  
i18 = PoWadlo63 / j2 in fo rmu la s  (3) and (3a) affect  thei r  a ccu racy  little. 

This fact  could be used to justify ana ly t i c  methods for  calculat ing cha rac t e r i s t i c s ,  with separa t ion  of 
the equations of motion and energy.  But since al l  the a i r  was used to vent i la te  the gap in the p resen t  study, 
the d imens ion less  number  I16 coincides with I19 = W0r162 which re f l ec t s  the energy  lost  to a c c e l e r a -  
t ion of the gas [14]. Numer ica l  e s t ima te s  show, however ,  that the energy  lost  to acce le ra t ion  of the gas was 
v e r y  smal l  compared  with the energy  used for  i ts  heating under the exper imenta l  conditions. The pr inciple  
role  is played by heating of the gas.  In addition, s trengthening the vent i la t ion of the gas lowers  the t e m -  
pe ra tu re  and the v i scos i ty  of the a i r ,  and these  exer t  opposite effects  on the sign of the exponent of W, 
whereas  blowing off the a r c  p resupposes  a minus sign here .  This indicates  that at low veloci t ies  of the 
axia l  flow the principle ro le  is played by the lengthening of the a r c  in the axial  d i rec t ion and not by heat 
exchange. With fu r the r  i nc r ea s e  of the axial  velocity,  however ,  the length of the a r c  becomes  stabil ized 
and the hea t -exchange  p r o c e s s e s  come into play. The exponent of W should then become positive. In the 
invest igated range  of p a r a m e t e r s ,  this effect  can be neglected,  so as  not to compl ica te  it  any fur ther .  

Bes ides ,w i th the  a l ready  physical  phenomena, the a r c  column is influenced a lso  by other fac to rs ,  
al lowance of which can yield a m o r e  detailed pic ture  of the behavior  of the a rc .  To this end, however ,  it 
is des i rab le  to genera l ize  the exper imenta l  data pertaining to different  p r e s s u r e s  and to different  flowing 
gases .  

I 
G 
V 
W 
B 
D 

is the in tensi ty  of a r c  current ;  
is the gas- f low ra te ;  
is  the veloci ty  of a rc ;  
is the veloci ty  of the gas around the a r c ;  
is the magnet ic  field induction; 
is the d i ame te r  of ex terna l  e lec t rode;  

N O T A T I O N  
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P0 
P0, ?70, o'0 
P 

is  the gap between e lec t rodes ;  
is  the magnet ic  permeabi l i ty ;  
a r e  the sca le  values  of densi ty  of gas,  e lec t r i c  conductivity, and enthalpy; 
is  the ambien t  p r e s s u r e .  
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